57 research outputs found

    The first ICASE/LARC industry roundtable: Session proceedings

    Get PDF
    The first 'ICASE/LaRC Industry Roundtable' was held on October 3-4, 1994, in Williamsburg, Virginia. The main purpose of the roundtable was to draw attention of ICASE/LaRC scientists to industrial research agendas. The roundtable was attended by about 200 scientists, 30% from NASA Langley; 20% from universities; 17% NASA Langley contractors (including ICASE personnel); and the remainder from federal agencies other than NASA Langley. The technical areas covered reflected the major research programs in ICASE and closely associated NASA branches. About 80% of the speakers were from industry. This report is a compilation of the session summaries prepared by the session chairmen

    The Second ICASE/LaRC Industry Roundtable: Session Proceedings

    Get PDF
    The second ICASE/LaRC Industry Roundtable was held October 7-9, 1996 at the Williamsburg Hospitality House, Williamsburg, Virginia. Like the first roundtable in 1994, this meeting had two objectives: (1) to expose ICASE and LaRC scientists to industrial research agendas; and (2) to acquaint industry with the capabilities and technology available at ICASE, LaRC and academic partners of ICASE. Nineteen sessions were held in three parallel tracks. Of the 170 participants, over one third were affiliated with various industries. Proceedings from the different sessions are summarized in this report

    Reduction of Large Dynamical Systems by Minimization of Evolution Rate

    Get PDF
    Reduction of a large system of equations to a lower-dimensional system of similar dynamics is investigated. For dynamical systems with disparate timescales, a criterion for determining redundant dimensions and a general reduction method based on the minimization of evolution rate are proposed

    Towards understanding turbulent scalar mixing

    Get PDF
    In an effort towards understanding turbulent scalar mixing, we study the effect of molecular mixing, first in isolation and then by accounting for the effects of the velocity field. The chief motivation for this approach stems from the strong resemblance of the scalar probability density function (PDF) obtained from the scalar field evolving from the heat conduction equation that arises in a turbulent velocity field. However, the evolution of the scalar dissipation is different for the two cases. We attempt to account for these differences, which are due to the velocity field, using a Lagrangian frame analysis. After establishing the usefulness of this approach, we use the heat-conduction simulations (HCS), in lieu of the more expensive direct numerical simulations (DNS), to study many of the less understood aspects of turbulent mixing. Comparison between the HCS data and available models are made whenever possible. It is established that the beta PDF characterizes the evolution of the scalar PDF during mixing from all types of non-premixed initial conditions

    Dynamical System Analysis of Reynolds Stress Closure Equations

    Get PDF
    In this paper, we establish the causality between the model coefficients in the standard pressure-strain correlation model and the predicted equilibrium states for homogeneous turbulence. We accomplish this by performing a comprehensive fixed point analysis of the modeled Reynolds stress and dissipation rate equations. The results from this analysis will be very useful for developing improved pressure-strain correlation models to yield observed equilibrium behavior

    Second Moment Closure Near the Two-component Limit

    Get PDF
    The purpose of this paper is to explore some wider implications of the two-component limit for both single point turbulence models and spectral closure theories. Although the two-component limit arises most naturally in inhomogeneous problems like wall-bounded turbulence, the analysis will be restricted to homogeneous turbulence. But since homogeneous turbulence is the crucial case for realizability, the conclusions will nevertheless be applicable to modeling. Th essential point of our argument is that whereas the evolution of the stochastic velocity field is Markovian because it is governed by the Navier-Stokes equations, the exact stress evolution equation is not Markovian because it is unclosed. This property of moment evolution has been stressed by Kraichnan (1959). We will show that modeling stress evolution at the two-component limit with a closure that is Markovian in the stresses alone leads to basic inconsistencies in single-point modeling and, perhaps surprisingly, in spectral modes as well

    Prandtl number effects on the hydrodynamic stability of compressible boundary layers: flow-thermodynamic interactions

    Full text link
    Hydrodynamic stability of compressible boundary layers is strongly influenced by Mach number (MM), Prandtl number (PrPr) and thermal wall boundary condition. These effects manifest on the flow stability via the flow-thermodynamic interactions. Comprehensive understanding of stability flow physics is of fundamental interest and important for developing predictive tools and closure models for integrated transition-to-turbulence computations. The flow-thermodynamic interactions are examined using linear analysis and direct numerical simulations (DNS) in the following parameter regime: 0.5≤M≤80.5 \leq M \leq 8; and, 0.5≤Pr≤1.30.5 \leq Pr \leq 1.3. For adiabatic wall boundary condition, increasing Prandtl number has a destabilizing effect. In this work, we characterize the behavior of production, pressure-strain correlation and pressure-dilatation as functions of Mach and Prandtl numbers. First and second instability modes exhibit similar stability trends but the underlying flow physics is shown to be diametrically opposite. The Prandtl-number influence on instability is explicated in terms of the base flow profile with respect to the different perturbation mode shapes

    Spectrum and energy transfer in steady Burgers turbulence

    Get PDF
    The spectrum, energy transfer, and spectral interactions in steady Burgers turbulence are studied using numerically generated data. The velocity field is initially random and the turbulence is maintained steady by forcing the amplitude of a band of low wavenumbers to be invariant in time, while permitting the phase to change as dictated by the equation. The spectrum, as expected, is very different from that of Navier-Stokes turbulence. It is demonstrated that the far range of the spectrum scales as predicted by Burgers. Despite the difference in their spectra, in matters of the spectral energy transfer and triadic interactions Burgers turbulence is similar to Navier-Stokes turbulence
    • …
    corecore